Computational study of paroxetine-like inhibitors reveals new molecular insight to inhibit GRK2 with selectivity over ROCK1

Seketoulie Keretsu^a, Swapnil P. Bhujbal^a, Seung Joo Cho^{a,b,*}

^a Department of Biomedical Sciences, College of Medicine, Chosun University, Gwangju 501-759, Republic of Korea

^bDepartment of Cellular·Molecular Medicine, College of Medicine, Chosun University,

Gwangju 501-759, Republic of Korea

Address: College of Medicine, Chosun University, 375 Seosuk-dong, Dong-gu Gwangju 501-759, Republic of Korea;

E-mail:chosj@chosun.ac.kr;

Telephone: +82-62-230-7482 (office) +82-11-479-1010 (cell phone

^{*}Author for correspondence

Supplementary Materials

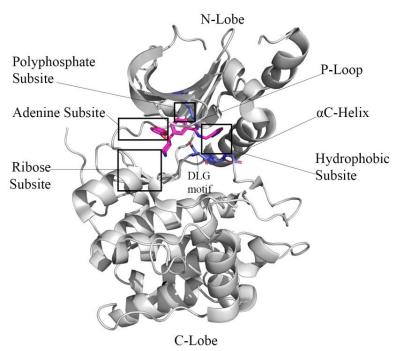
Table S1. Comparison of the residues at the adenine subsite, polyphosphate subsite, ribose subsite and hydrophobic subsite for GRK2, ROCK1 and ROCK2

Subsites		GRK2	ROCK1	ROCK2
Adenine Subsite		Met274, Asn275, Gly276, Gly277, Asp278, Leu279, His280	Met156, Pro157, Gly158, Gly159, Asp160, Leu161, Val162	Met172, Pro173, Gly174, Gly175, Asp176, Leu177, Val178.
Polyphosphate	Subsite	Tyr217, Ala218, Met219, Lys220, Cys221, Leu222	Tyr102, Ala103, Met104,Lys105,Leu106, Leu107	Tyr118, Ala119, Met120, Lys121, Leu122, Leu123
Ribose Subsite		Gly276, Gly277, Asp278, Leu279, His280, Tyr281, His282, Leu283, Ser284	Gly156, Gly159, Asp160, Leu161, Val162, Asn163, Leu164, Met165	Gly174, Gly175, Asp176, Leu177, Val178, Asn179, Leu180, Met181,
	P-loop	Ile197, Gly198, Arg199, Gly200, Gly201, Phe202, Gly203, Glu204, Val205	Ile98, Gly99, Arg100, Gly101, Ala102, Phe103, Gly104, Gly105, Val106	Ile82, Gly83, Arg84, Gly85, Ala86, Phe87, Gly88, Glu89, Val90
Hydrophobic Subsite	αC-Helix	Thr234, Leu235, Ala236, Leu237, Asn238, Glu239, Arg240, Ile241, Met242, Leu243, Ser244, Leu245, Val246, Ser247	Ser118, Ala119, Phe120, Phe121, Trp122, Glu123, Glu124, Arg125, Asp126, Ile127, Met128, Ala129, Phe130, Ala131	Ser134, Ala135, Phe136, Phe137, Trp138, Glu139, Glu140, Arg141, Asp142, Ile143, Met144, Ala145, Phe146, Ala147
	DFG/DLG motif	Asp335, Leu336, Gly337	Asp216, Phe217, Gly218	Asp232, Phe233, Gly234

Table S2. Experimental and predicted pIC₅₀ values with their residuals of CoMFA for GRK2

	Actual pIC ₅₀	GRK2 CoMFA	
Compound		Predicted pIC ₅₀	Residual
1*	5.9	6.0	-0.1
2*	6.1	5.8	0.3
3	4.7	4.9	-0.2
4	5.4	5.4	-0.1
5*	6.2	6.8	-0.7

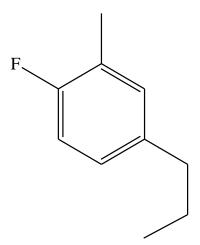
6	6.7	6.8	-0.1
7	6.7	6.6	0.1
8	7.3	7.2	0.0
9*	6.4	6.1	0.3
10	6.4	6.6	-0.3
11	6.8	6.8	0.0
12	6.6	6.5	0.0
13	5.3	5.2	0.1
14*	6.6	6.2	0.4
15	6.9	7.1	-0.2
16*	7.2	7.5	-0.4
17*	6.9	7.1	-0.2
18	5.9	6.0	0.0
19	5.6	5.4	0.2
20	5.7	5.7	0.0
21*	6.6	6.7	-0.1
22	4.6	4.5	0.1
24*	6.3	5.6	0.8
25	6.2	6.4	-0.2
26	5.7	5.5	0.2
27*	6.1	6.1	0.0
28	5.6	5.6	-0.1
29	5.8	6.0	-0.2
30*	5.7	5.9	-0.2
31*	4.9	4.9	0.0
32	5.7	5.9	-0.3

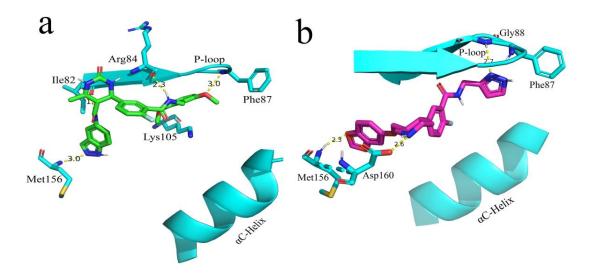

33	5.7	5.8	0.0
34	5.7	5.7	0.0
35*	4.4	5.1	-0.7
36	5.6	5.6	0.0
37*	6.2	6.6	-0.4
38	5.8	5.9	-0.1
39	5.7	5.7	0.0
40*	5.5	5.9	-0.4
41*	5.5	5.7	-0.2
42	5.5	5.6	-0.1
43	5.2	5.2	0.1
44*	5.2	5.9	-0.7
45	6.1	6.1	0.0
46	6.2	6.2	0.0
47	7.5	7.0	0.6
48	6.1	6.7	-0.6
49	7.5	7.1	0.4
50 [*]	5.9	5.7	0.2
51	5.7	5.4	0.2
52	6.4	6.4	0.0
53*	4.8	5.7	-0.9
1	1	1	1

^{*} Test set compounds

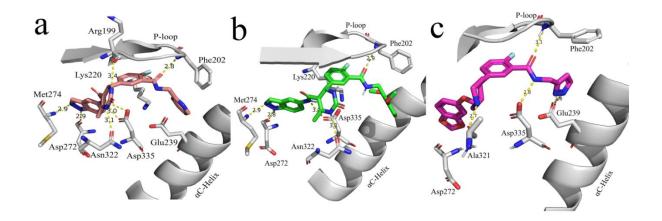
Table S3. Experimental and predicted pIC_{50} values with their residuals of CoMFA for ROCK1.

	Actual pIC ₅₀	ROCK1 CoMFA	
Compound		Predicted	Residual
	1 50	pIC ₅₀	Residual
2	7.0	7.1	-0.1
3	6.7	6.6	0.1
4	6.3	6.3	0.0
5	7.2	7.1	0.0
6	7.7	7.4	0.3
7	7.0	6.6	0.3
8	7.2	7.3	-0.1
9	7.0	7.0	0.0
10	7.3	7.3	0.0
11	8.0	8.2	-0.3
12	7.6	7.6	0.0
13	7.1	7.1	0.0
14	7.9	7.9	0.0
15	5.2	5.7	-0.5
16	5.2	5.1	0.2
19	5.7	5.2	0.5
20	6.8	6.9	-0.1
21	6.5	6.5	-0.1
22	6.3	6.4	-0.1
23	6.4	6.4	-0.1
24	6.7	6.7	-0.1


Figure S1. The catalytic domain (grey) of GRK2 with the compound **47** (magenta) binded at its active site (PDB ID **5UKM**). The adenine subsite, ribose subsite, polyphosphate subsite and hydrophobic subsite are indicated with black rectangular boxes. The DFG/DLG motif and the Lys220 which are conserved in most AGC kinases are shown in stick representation (deepblue).


Figure S2. The alignment of the amino acid sequences in the kinase domains of GRK2 and ROCK1. Identical and positive matches in the sequences are highlighted by red and green colours respectively.

Protein	Residue	Identities: 89/271 (33 %) Positives: 143/271 (52%)	Residue
	number	Sequences	number
GRK2	191	FSVHR I GRGGEGEN YGCNKAD GRMVANIKC DEKRIKMKQGETLALNULIMLSLVSTGD	250
ROCK1	76	NENVKVIGROA I GHA QLVINHKS <mark>irin v vamik</mark> li s <mark>i</mark> fe <mark>m</mark> i k <mark>r</mark> sdsaf fwe <mark>gil</mark> d <mark>ima</mark> fa <mark>ns</mark>	133
GRK2	251	CEF I CMSTATHTPDK SFILDLMNGGDLHYHLOHGNFS ADMRES AMELI G EHMEN	310
ROCK1	134	- <mark>wvv</mark> qifyai qddryi ym <mark>yme</mark> ym pegdu vnl <mark>m</mark> n <mark>ydu</mark> -pi kwarim t <mark>agyvi</mark> a <mark>d</mark> a iis	191
GRK2	311	RFV <mark>VYRDLKI AT IELDEHGHVR I ST</mark> LELACDF STK K PHA S UGT HG MAPEVLQ KGVA	367
ROCK1	192	MGF <mark>IHROVKO</mark> D <mark>AMIJIOK</mark> S <mark>BILKLA</mark> FTTCMKM <mark>NKE</mark> GMV <mark>R</mark> CDT <mark>AVGI</mark> PD <mark>V I SPAVIJK</mark> SQGG	251
GRK2	368	T DSS A DMF \$LL CM LFKLL R C H SPL RQHKTKDK H EIDR W TLTM <mark>AN</mark> EL TI SF TP L R	422
ROCK1	252	DGY GREC <mark>DWW V V</mark> F YEM V DID YADS LVGTYS-KIMNHKN <mark>S L</mark> TF DDNDI K. AK	310
GRK2	423	SLEGL QR VNR CCCGR AQUVRES PH	453
ROCK1	311	NII CAFI T- TREV <mark>rig</mark> RNIVEI KRHL	338


Figure S3. The common substructure used in aligning the dataset compounds during the development of the CoMFA Models for GRK2 and ROCK1.

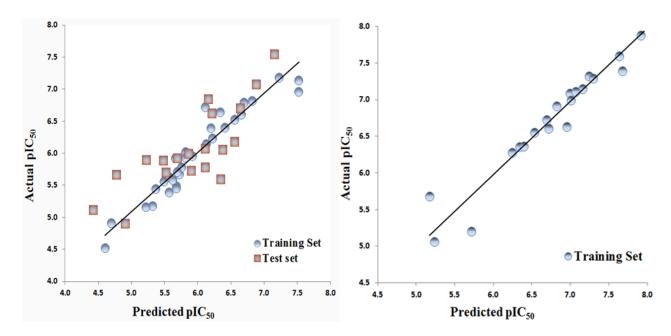

Figure S4. The docked conformations of the most selective compound (compound **17**) and the most active compound for GRK2 (compound **47**) inside the active site of ROCK1. H-bond interactions were represented as yellow dotted lines. (a) Compound **17** with ROCK1 (b) Compound **47** with ROCK1.

Figure S5. The interactions observed in the crystal structures of compound **11**, **17** and **47** with GRK2. H-bond interactions were represented as yellow dotted lines. (a) Compound **11** and GRK2 (PDB ID **5HE0**) (b) compound **17** and GRK2 (PDB ID **5HE2**) (c) compound **47** and GRK2 (PDB ID **5UKM**)

Figure S6. Scatterplot generated from the CoMFA models. (a) Scatterplot of the CoMFA model for GRK2. (b) Scatterplot of the CoMFA model for ROCK1. The values on x-axis and y-axis represent the predicted pIC_{50} value and the actual pIC_{50} values respectively.

